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CHAPTER

ONE

ENVIRONMENT OVERVIEW

1.1 Introduction

Learn-to-Race (L2R) is an OpenAI-gym compliant, multimodal control environment, where agents learn how to race.

Unlike many simplistic learning environments, ours is built around high-fidelity simulators, based on Unreal Engine 4,
such as the Arrival Autonomous Racing Simulator—featuring full software-in-the-loop (SIL) and even hardware-in-
the-loop (HIL) simulation capabilities. This simulator has played a key role in bringing autonomous racing technology
to real life in the Roborace series, the world’s first extreme competition of teams developing self-driving AI. The
L2R framework is the official training environment for Carnegie Mellon University’s Roborace team, the first North
American team to join the international challenge.

Autonomous Racing poses a significant challenge for artificial intelligence, where agents must make accurate and high-
risk control decisions in real-time, while operating autonomous systems near their physical limits. The L2R framework
presents objective-centric tasks, rather than providing abstract rewards, and provides numerous quantitative metrics to
measure the racing performance and trajectory quality of various agents.

As in the real-world, the Arrival Autonomous Racing Simulator is not time-invariant. In order to generate deployable
solutions, latencies that result from model inference and from algorithm optimisation must be considered in the design
of control policies. For example (model inference latency), whereas using large-capacity visual processing backbones
may be desirable from a representation learning perspective, these large processing pipelines can induce significant
inference latency for real-time applications. As another example (algorithm optimisation latency), the optimisation of
learning-based approaches (e.g., reinforcement learning algorithms, with neural function approximators) often involves
performing gradient steps, which, if performed in the middle of an episode, can also introduce latency. Latencies that
go unaddressed could interfere with the control algorithm’s ability to send quick control commands and, thus, could
cause the vehicle to drive outside the admissible area or to engage in unsafe behaviour on the road. Both of these
situations pose fascinating and exciting challenges for autonomous racing research. We hope to encourage work on
these and other interesting problems, through the use of the Learn-to-Race framework.

For more information, please read a couple of our conference papers:

• Learn-to-Race: A Multimodal Control Environment for Autonomous Racing

• Safe Autonomous Racing via Approximate Reachability on Ego-vision

1
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1.2 Baseline Models

We provide three baseline models, to demonstrate how to use L2R: a random agent, a model predictive control (MPC)
agent, a Soft Actor-Critic reinforcement learning (RL) agent, and an imitation learning agent based on the MPC’s
demonstrations.

The RandomAgent executes actions, completely at random. The MPCAgent recursively plans trajectories according to
a dynamics model of the vehicle, then executes actions according to the current plan. The SACAgent is a learning-based
method, which relies on the optimisation of a stochastic policy, model-free.

1.3 Action Space

In the Learn-to-Race tasks, agents execute actions in the environment, according to steering and acceleration control,
each supported by the simulator on a continuous range from -1.0 to 1.0.

Action Type Range
Steering Continuous [-1.0, 1.0]
Acceleration Continuous [-1.0, 1.0]

To provide additional flexibility for learning-based approaches, the L2R framework supports a scaled action space of
[-1.0, 1.0] for steering control and [-16.0, 6.0] for acceleration control, by default. You can modify the boundaries of
the action space by changing the parameters for env_kwargs.action_if_kwargs in params-env.yaml.

Negative acceleration commands perform braking actions, until the vehicle is stationary. If negative acceleration com-
mands continue after the vehicle is stationary, the vehicle will reverse.

While you can change the gear, in practice we suggest forcing the agent to stay in drive since the others would not be
advantageous in completing the tasks we present (we don’t include it as a part of the action space). Note that negative
acceleration values will brake the vehicle.

1.4 Observation Space

We offer two high-level settings for the observation space: vision-only and multimodal. In both, the agent receives RGB
images from the vehicle’s front-facing camera, examples below. In the latter, the environment also provides sensor data,
including pose data from the vehicle’s IMU sensor.

1.5 Customizable Sensor Configurations

One of the key features of this environment is the ability to create arbitrary configurations of vehicle sensors. This
provides users a rich sandbox for multimodal, learning based approaches. The following sensors are supported and can
be placed, if applicable, at any location relative to the vehicle:

• RGB cameras

• Depth cameras

• Ground truth segmentation cameras

• Fisheye cameras

• Ray trace LiDARs

2 Chapter 1. Environment Overview
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• Depth 2D LiDARs

• Radars

Additionally, these sensors are parameterized and can be customized further; for example, cameras have modifi-
able image size, field-of-view, and exposure. Default sensor configurations are provided in env_kwargs.cameras and
sim_kwargs in params-env.yaml. We provide further description on sensor configuration

You can create cameras anywhere relative to the vehicle, allowing unique points-of-view such as a birdseye perspective
which we include in the vehicle configuration file.

For more information, see Creating Custom Sensor Configurations

Whereas we encourage the use of all sensors for training and experimentation, only the CameraFrontRGB camera will
be used for official L2R task evaluation, e.g., in our Learn-to-Race Autonomous Racing Virtual Challenges.

1.6 Interfaces and configuration

The environment interacts with additional modules in the overall L2R framework, such as the racetrack mapping (for
loading and configuring the world), the Controller (which interfaces with an underlying simulator or vehicle stack) and
the Tracker (which tracks the vehicle state and measures progress along the racetrack).

Whereas each of these interfaces can be further configured from params-env.yaml, the default values provided will be
used for official L2R task evaluation, e.g., in our Learn-to-Race Autonomous Racing Virtual Challenges.

• Tracker (l2r/core/tracker.py), configured via env_kwargs in configs/params-env.yaml

• Controller (l2r/core/controller.py), configured via env_kwargs.controller_kwargs in configs/params-env.yaml

• racetrack (l2r/racetracks/mapping.py), configured via sim_kwargs in params-env.yaml

1.7 Racetracks

We currently support two racetracks in our environment, both of which emulate real-world tracks. The first is the
Thruxton Circuit, modeled off the track at the Thruxton Motorsport Centre in the United Kingdom. The second is the
Anglessey National Circuit, located in Ty Croes, Anglesey, Wales.

Additional tracks are used for evaluation, e.g., in open Learn-to-Race Autonomous Racing Virtual Challenges, such as
the Vegas North Road track, located at Las Vegas Motor Speedway in the United States.

We will continue to add more racetracks in the future, for both training an evaluation.

1.8 Research Citation

Please cite this work if you use L2R as a part of your research.

@inproceedings{herman2021learn,
title={Learn-to-Race: A Multimodal Control Environment for Autonomous Racing}

→˓,
author={Herman, James and Francis, Jonathan and Ganju, Siddha and Chen,␣

→˓Bingqing and Koul, Anirudh and Gupta, Abhinav and Skabelkin, Alexey and Zhukov, Ivan␣
→˓and Kumskoy, Max and Nyberg, Eric},

booktitle={Proceedings of the IEEE/CVF International Conference on Computer␣
→˓Vision},

(continues on next page)
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(continued from previous page)

pages={9793--9802},
year={2021}

}
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CHAPTER

TWO

SETUP & INSTALLATION

2.1 Racing Simulator

To use the Learn-to-Race environment, you must first request access, by filling out and returning a signed academic-use
license.

Our environment interfaces with the Arrival Autonomous Racing Simulator via a SimulatorController object which
can launch, restart, and control the simulator.

2.1.1 Simulator Requirements

Operating System: The racing simulator has been tested on Ubuntu Linux 18.04 OS.

Graphics Hardware: The simulator has been tested to run smoothly on NVIDIA GeForce GTX 970 graphics cards.
The simulator has been additionally tested on the following cards:

• NVIDIA GeForce GTX 1070

• NVIDIA GeForce GTX 1080, 1080 Ti

• NVIDIA GeForce GTX 2080, 2080 Ti

• NVIDIA GeForce GTX 3080, 3080 Ti

• NVIDIA GeForce GTX 3090

Software Dependencies:

• Please install the appropriate CUDA and NVIDIA drivers.

• Please additionally install the following software dependencies:

$ sudo apt-get install libhdf5-dev libglib2.0-dev libglib2.0-dev ffmpeg libsm6 libxext6␣
→˓apt-transport-https
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2.1.2 Running the Simulator

After the signed academic-use license is returned and approved, you will be given the opportunity to download the
Arrival Autonomous Racing Simulator (*.tar.gz file). The simulator is currently being distributed as part of the Learn-
to-Race Autonomous Racing Virtual Challenge, with a base file footprint of 2.8 GB.

Open a temrinal screen and untar the simulator source, to a location of your choice:

$ cd /path/to/simulator/download/location
$ tar -xvzf /path/to/simulator/ArrivalSim-linux-{VERSION}.tar.gz
$ chmod -R 777 /path/to/simulator/ArrivalSim-linux-{VERSION}/

We recommend running the simulator as a dedicated Python process, by executing:

$ bash /path/to/simulator/ArrivalSim-linux-0.7.0.182276/LinuxNoEditor/ArrivalSim.sh -
→˓openGL

Note: Users may receive a pop-up window, warning about OpenGL being deprecated in favour of Vulkan. It is safe to
click ‘Ok’, to continue initialisation and use of the simulator.

2.2 Learn-to-Race Framework

2.2.1 Installation

Simply download the source code from the Github repository.

We recommend using a python virtual environment, such as Anaconda. Please download the appropriate version for
your system. We have tested Learn-to-Race with Python versions 3.6 and 3.7.

Create a new conda environment, activate it, then install the Learn-to-Race python package dependencies:

$ conda env create -n l2r -m python=3.6 # create virtual environment
$ conda activate l2r # activate the environment
(l2r) $ cd /path/to/repository/
(l2r) $ pip install -r requirements.txt

2.3 Runtime Steps

1. Start the simulator (e.g., in a separate terminal window), if it has not already been started:

$ bash /path/to/simulator/ArrivalSim-linux-0.7.0.182276/LinuxNoEditor/ArrivalSim.sh -
→˓openGL

2. Run/train/evaluate an agent, using the Learn-to-Race framework (e.g., within a tmux window):

$ cd /path/to/repository
$ cd l2r
$ tmux new -s development
$ conda activate l2r
(l2r) $ chmod +x run.bash
(l2r) $ ./run.bash -b random

6 Chapter 2. Setup & Installation
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2.3.1 Basic Agent Example (Random Agent)

Here is an example of an agent that chooses random actions from the action space, provided by the environment.

We provide such an agent called a RandomAgent with the source code below:

from core.templates import AbstractAgent
from envs.env import RacingEnv

class RandomActionAgent(AbstractAgent):
"""Reinforcement learning agent that simply chooses random actions.

:param dict training_kwargs: training keyword arguments
"""
def __init__(self, training_kwargs):

self.num_episodes = training_kwargs['num_episodes']

def race(self):
"""Demonstrative training method.
"""
for e in range(self.num_episodes):

print(f'Episode {e+1} of {self.num_episodes}')
ep_reward = 0
state, done = self.env.reset(), False

while not done:
action = self.select_action()
state, reward, done, info = self.env.step(action)
ep_reward += reward

print(f'Completed episode with total reward: {ep_reward}')
print(f'Episode info: {info}\n')

def select_action(self):
"""Select a random action from the action space.

:return: random action to take
:rtype: numpy array
"""
return self.env.action_space.sample()

def create_env(self, env_kwargs, sim_kwargs):
"""Instantiate a racing environment

:param dict env_kwargs: environment keyword arguments
:param dict sim_kwargs: simulator setting keyword arguments
"""
self.env = RacingEnv(

max_timesteps=env_kwargs['max_timesteps'],
obs_delay=env_kwargs['obs_delay'],
not_moving_timeout=env_kwargs['not_moving_timeout'],
controller_kwargs=env_kwargs['controller_kwargs'],
reward_pol=env_kwargs['reward_pol'],
reward_kwargs=env_kwargs['reward_kwargs'],

(continues on next page)

2.3. Runtime Steps 7



Learn-to-Race

(continued from previous page)

action_if_kwargs=env_kwargs['action_if_kwargs'],
pose_if_kwargs=env_kwargs['pose_if_kwargs'],
cameras=env_kwargs['cameras']

)

self.env.make(
level=sim_kwargs['racetrack'],
multimodal=env_kwargs['multimodal'],
driver_params=sim_kwargs['driver_params']

)

print(f'Environment created with observation space: ')
for k, v in self.env.observation_space.spaces.items():

print(f'\t{k}: {v}')

Run the random agent baseline model

For convenience, we have provided a number of files to assist with training a model. To run the random agent baseline,
you can simply run the script in the top level of the repository with the baseline flag -b with argument random:

$ chmod +x run.bash # make our script executable
$ ./run.bash -b random

The agent will begin randomly taking actions in the environment and will print the reward for each episode upon
completion.

Convenience Scripts

run.bash simply passes parameters files to Python scripts. The baseline configuration files contains a variety of
parameters including:

1. training parameters

2. environment parameters (for the RL environment)

3. simulator parameters (for the simulator)

We recommend using this structure, or following a similar practice, to train models with the environment and keep
track of different training runs.

8 Chapter 2. Setup & Installation



CHAPTER

THREE

BASELINES

3.1 Demonstration Against Human Experts

3.2 Random Action Agent

Our RandomActionAgent is a basic demonstration of an agent interacting with the environment which we explain in
the Getting Started section of the docs. This agent simply takes random actions in the environment with an action space
that is restricted to only take non-negative acceleration values.

3.2.1 Usage

As mentioned previously, you need to have the docker image with the simulator to use the environment. Simply add
the -b flag and argument random as a command line argument to ./run.bash to use this agent.

$ chmod +x run.bash # make our script executable
$ ./run.bash -b random

3.3 Soft Actor-Critic

We also provide a more detailed demonstration of how to use the environment with our Soft Actor-Critic agent us-
ing OpenAI’s Spinning Up Pytorch implementation with minor adjustments. Specifically these adjustments include
wrapping methods which returned observations from the environment to first encode the raw images into a latent rep-
resentation, waiting until the end of the episode to make gradient updates, and removing unused functionality.

3.3.1 Training Performance

For both tracks, we provide our agent’s model after 1000 episodes which was slightly less than 1 million environment
steps for the Las Vegas Track and slightly more for the Thruxton track.

9
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3.3.2 Evaluation Performance

The SAC agent struggles when transferring its learned experience from the Thruxton track to the Las Vegas evaluation
track even after 60 minutes of exploration as it learns to simply stop in the middle of the track to avoid the penalty of
going out-of-bounds.

3.3.3 Usage

To run the trained model, simply provide -b flag and argument sac to run.bash. Both the encoder and checkpoint
models were trained separately for each track, so if you would like to switch to the Thruxton track, be sure to change
the encoder and checkpoint paths in configs/params_sac.yaml in addition to the track name.

$ chmod +x run.bash # make our script executable
$ ./run.bash -b sac

3.3.4 Vision-Only Perception & Control

This agent learns non-trivial control of the race car exlusively from visual features. First, we pretrained a variational
autoencoder on the provided sample image datasets to allow our agent to learn from a low-dimensional representation
of the images. Our VAE is a slight modification of Shubham Chandel’s implementation.

3.3.5 Restriction of the Action Space

For this agent, we restricted the scaled action space to [-0.1, 4.0] for acceleration and [-0.3, 0.3] for steering
to allow for faster convergence.

3.3.6 Custom Reward Policy

Additionally, we modified the default reward policy for the environment to include bonus if the agent is near the center
of the track for each step in the environment but only if it had made progress down the track. Doing so has numerous
consequences including:

• encouraging the agent to safely stay near the middle of the track

• disincentivizing the agent from engaging in corner cutting

• implicitly rewarding the agent to drive more slowly

As such, this reward allows for faster convergence in terms of number of episodes before completing its first lap in the
environment. However, we noticed that the agent learns to zig-zag; we believe this may be an intentional effort to slow
down and gather more near-center bonuses.
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3.4 Model Predictive Control

We include a model predictive control (MPC), non-learning agent with the environment too. This reference imple-
mentation demonstrates a controller which attempts to minimize tracking error with respect to the centerline of the
racetrack at a pre-specified reference speed.

3.4.1 Performance

The MPC agent does well, completing laps consistently, on the Thruxton track by following a conservative trajectory.
On the LVMS track, however, it seems to occasionally falter on the highest curvature points of the track.

3.4.2 Usage

To run the trained model, simply provide the -b flag and argument mpc to run.bash. Do note, however, that the MPC
requires torch<=1.4 unlike the SAC baseline.

$ chmod +x run.bash # make our script executable
$ ./run.bash -b mpc

3.4. Model Predictive Control 11
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CHAPTER

FOUR

TASK OVERVIEW

4.1 Overview

The task is to learn how to race using either vision-only or multiple input modalities. While Arrival’s racing simulator
and the L2R framework is suitable for a wide variety of approaches including:

• classical control

• pre-planning trajectories

• reinforcement learning (RL)

• imiatation learning (IL)

We are most interested in agents which learn how to perceive their surroundings and effectively control the race car. We
are also familiar with the success of RL approaches and fully expect, and encourage, the community to create agents
which are significantly better than our human benchmarks. However, learning-based approaches often have poor sample
efficiency and fail at generalizing to new scenarios. Humans, on the other hand, are good at quickly adapting to new
situations, such as racing on a new, unseen track after only a short warmup period. The L2R task will challenges agents’
ability race in such a way.

4.1.1 Task Definition

Rather than giving agents an unbounded amount of time to perfectly overfit to a racetrack, the L2R task allows only
a limited look at a new track, much like a Formula 1 driver gets only a brief practice session prior to the actual race.
More concretely, agent assessment involves two stages:

(1) Pre-evaluation: agents will have access to an unseen, evaluation racetrack for 60 minutes with unfrozen weights.
The agent is free to use this time for any purpose they deem necessary, but we generally expect agents to transfer
their prior racing knowledge to the new environment after a brief exploration period.

(2) Evaluation: to qualify for evaluation, the agent must demonstrate that it can complete at least 1 lap during the
pre-evaluation stage, subject to a modest maximum time limit. Successful agents will be evaluated on the testing
racetrack and their metrics, defined below, will be recorded and updated on a leaderboard. To prevent competitors
from unfairly learning on the test track, submissions will only be able to see their agent’s results and will not
have access to any model updates during the pre-evaluation stage.

Note: We currently only support single vehicle racing, but hope to introduce a multi-agent environment in the future.

13
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4.1.2 Input Modalities

We present two distinct sets of information available to agents. All information available to agents use virtual sen-
sors that emulate their real counterparts, so the agent does not have access to any privileged information. A separate
leadboard will be used for agent’s using the more restricted vision-only input mode.

Vision-Only The agent only has access to raw pixel values from the vehicle’s cameras

Multimodal In addition to the cameras, we provide the agent with sensor data, primarily from the vehicle’s IMU
sensor

4.2 Metrics

Learn-to-Race defines numerous metrics for the assessment of an agent’s performance listed below. These are provided
to agents upon episode termination in the info of the last environment step.

Metric Definition
Episode Completion Per-
centage

Percentage of the 3-lap episode completed

Episode Duration Duration of the episode, in seconds
Average Adjusted Track
Speed

Average speed, adjusted for environmental conditions, in km/h

Average Displacement Er-
ror

Euclidean displacement from the track centerline, in meters

Trajectory Admissibility Measurement of the safety of the trajectory
Trajectory Efficiency Ratio of track curvature to trajectory curvature
Movement Smoothness Log dimensionless jerk based on accelerometer data

4.2.1 Basic Metrics

A successful episode is defined as completing 3 laps, from a standing start, without 2 wheels going out-of-bounds at
any point in time (1 is permissable, but considered unsafe). L2R provides basic metrics like the percentage of the 3
laps completed, the lap times for each successfully completed lap, the total time of the episode, and the average speed
of the vehicle.

4.2.2 Trajectory Quality

To understand the quality of an agent’s trajectories, L2R also includes metrics like average displacement error which
is simply the agent’s average distance from the centerline which is particularly useful measuring a controllers ability to
stay near its target. We also include trajectory admissibility or 𝛼, shown below, where 𝑡𝑢 is the cumulative time spent
unsafely with 1 wheel out-of-bounds and 𝑡𝑒 is the total length of the episode.

𝛼 = 1−
√︂

𝑡u
𝑡𝑒

A perfectly admissable trajectory is 1.0 with no time spent outside of the drivable area. Furthermore, we provide a
trajectory efficiency ratio which is the ratio of curvature of the racetrack’s centerline to the curvature of the trajectory,
measured parametrically using the root mean square. Strong racing agents should minimize their curvature to maintain
high speeds, for example, by cutting corners, and have an efficiency of at least 1.0.

14 Chapter 4. Task Overview
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Warning: If the agent doesn’t complete the entire episode, the trajectory efficiency metric will likely be distorted
since it would be comparing a partial trajectory, which may exclude high curvature areas of the track, to the entire
racetrack.

Good racing agents should also be able to anticipate the need for changes in velocity and have the ability to smoothly
control such changes. L2R also includes a movement smoothness measure, the negated log dimensionless jerk, 𝜂𝑙𝑑𝑗 ,
which quantifies the smoothness of the agent’s acceleration profile.

𝜂𝑙𝑑𝑗 = ln

(︃
(𝑡2 − 𝑡1)

3

𝑣2𝑝𝑒𝑎𝑘

∫︁ 𝑡2

𝑡1

⃒⃒⃒⃒
𝑑2𝑣

𝑑𝑡2

⃒⃒⃒⃒2
𝑑𝑡

)︃

Agents that tend to jerk the vehicle or brake violently, both dangerous maneuvers, will have a worse movement smooth-
ness measure.

4.3 Legal Modifications

For the purpose of benchmarking, we require that you adhere to some degree of requirements. There are no restrictions
in the modification or usage of:

• exploration or learning method

• incentive method (reward function)

• network architecture

• pre-trained perception models

• the delay between action and observation

• changing the action space

4.4 Training Only

Certain camera settings must be considered training-only if they are realistically accessible to a physical racecar. The
following camera settings are not available during evaluation:

• Segmentation cameras

• Cameras not touching the vehicle (for example, birdseye views)

4.5 Illegal Modifications

• Not using the default vehicle in the simulator (DevBot 2.0)

• Changing any physical parameters of the simulator such as the friction settings; we are not concerned about
sim2real transfer

• Modifying the tracker method that would influence termination conditions or lap timing

4.3. Legal Modifications 15
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CHAPTER

FIVE

DEFAULT CAMERA CONFIGURATION

5.1 Overview

The agent has access to camera sensor data which are raw pixel values (with bounds of 0 and 255). The default vehicle
configuration includes 8 cameras with names:

• CameraFrontRGB (CameraFrontSegm)

• CameraLeftRGB (CameraLeftSegm)

• CameraRightRGB (CameraRightSegm)

• CameraBirdsEyeRGB (CameraBirdsEyeSegm)

To include any subset of these cameras, simply include the camera’s name and parameters under env_kwargs.
cameras. For example:

env_kwargs:
cameras:
CameraFrontSegm:
Addr: 'tcp://0.0.0.0:9008'
Format: SegmBGR8
Width: 512
Height: 384
bAutoAdvertise: True

5.2 Modifying Cameras

The camera is flexible in terms of both the field-of-view angle, dimensions of the images, type of camera, and position.
To modify the camera, simply change the parameters:

GenericCamera: # Camera name which will be a key of observation␣
→˓dictionary
Addr: 'tcp://0.0.0.0:9008' # Address camera will publish to
Format: ColorBGR8 # ColorBGR8, SegmBGR8, HdrBGR8
FOVAngle: 120 # modifiable field of view parameter, in degrees
Width: 256 # modifiable image width parameter, in number of pixels
Height: 256 # modifiable image height parameter, in number of pixels
bAutoAdvertise: True

To set the environment to vision-only, set the multimodal parameter to False in the configs/params.yaml file.

17
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env_kwargs:
multimodal: False
...

5.3 Creating Cameras

See Creating Custom Sensor Configurations

18 Chapter 5. Default Camera Configuration
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CHAPTER

SIX

MULTIMODAL

6.1 Setting the Environment

The multimodal option provides visual features to the agent in an identical manner to the visual only feature set, but it
also includes data from the vehicle’s IMU sensor along with a few other pieces of data. We expect that the performance
of agents with multimodal sensory data to be better than that of visual only agents. To set the environment to multimodal,
simply modify the multimodal parameter to True in the configs/params.yaml file:

env_kwargs:
multimodal: True # when True, both images and pose data are provided to agent
max_timesteps: 5000
...

6.2 Environment Observations

Setting this parameter to True will change the return type of the step() method of the RacingEnv class to return a
spaces.Dict containing:

Track ID a numeric identifier of the current track, relevant for multi-track training

Camera Images a numpy array of shape (image_width, image_height, 3)

Additional Data a numpy array of shape (30,) with the following data:

Array Indicies Data
0 steering request
1 gear request
2 mode
3,4,5 direction velocity in m/s
6,7,8 directional acceleration in m/s^2
9,10,11 directional angular velocity
12,13,14 vehicle yaw, pitch, and roll, respectively
15,16,17 center of vehicle coordinates in the format (y, x, z)
18,19,20,21 wheel revolutions per minute (per wheel)
22,23,24,25 wheel braking (per wheel)
26,27,28,29 wheel torque (per wheel)

19
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CHAPTER

SEVEN

RACETRACKS & L2R DATASETS

7.1 Changing the Track

Our environment uses three racetracks in the racing simulator, all of which are modeled off of real-world racetracks.
The first is the North Road track at Las Vegas Motor Speedway located in the United States. The second is modeled
off of the Thruxton Circuit track located in the United Kingdom. The third is Anglesey National based off the track at
the Anglesey Circuit.

Warning: The LVMS track is currently used as an evaluation track, so its map will remain unavailable.

In the parameters file, you can specify the track you would like to use in the params.yaml file located in sim_kwargs
as follows:

sim_kwargs:
racetrack: ['Thruxton', 'AngleseyNational'] # 'VegasNorthRoad' is used for␣

→˓evaluation
...

If more than one track is specified, the environment will randomly select a track at the beginning of each episode
by default. Furthermore, the beginning of each episode will be a randomly selected point on the track unless the
environment is in evaluation mode.

env.eval() # start episodes at the finish line
env.training() # start episodes at a random location

7.2 L2R Dataset

Some users may wish to pre-train models, such as an encoder or segmentation model, on a sample of images from
the vehicle’s camera. While you can collect your own data from the environment, we provide datasets of each training
track for such purposes. The Thruxton dataset includes 10,600 complete transitions including the sensor data, camera
image, and action executed by the MPC agent <baselines.html#Model-Predictive-Control>, so it can also be used for
immitation based approaches. This data was collected across 9 full laps around the Thruxton circuit track.

Images were saved using `numpy.savez_compressed()` with arrays pose_data and image. The images are in
RGB format with a width of 512 pixels, height of 384 pixels, and a field of view of 90 degrees. Loading the images
into a numpy array can be done as follows:
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import matplotlib.pyplot as plt
import numpy as np

# load transition 100
filename = './transitions_100'
transition = np.load(filename + '.npz')

# view files, output is: ['image', 'multimodal_data', 'action']
print(loaded.files)

# pose_data is of shape (30,), image (384, 512, 3), and action (2,)
sensor_data, image, action = transition['multimodal_data'], transition['image'],␣
→˓transition['action']

# save the image
plt.imsave(f'{filename}.png', transition['image'])

7.3 Racetrack File Format

The racetrack files are in JSON format. Each contains coordinates of the inside, outside, and center lines of the track
in East, North, Up convention. The ENU coordinate system is a local coordinate system that requires a reference point,
which is also included in the racetrack files. Our RL environment converts the coordinates of the vehicle to ENU before
returning them from the step() method.

7.4 Basic Visualization of Tracks

VegasNorthRoad has an expert trajectory included which some users may find useful for immitation learning ap-
proaches. Users are certainly welcome to generate their own expert trajectories.
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The Thruxton Circuit track is known for its high speeds which will present unique challenges to drivers.

7.4. Basic Visualization of Tracks 23
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The following figure is from the Anglesey Circuit website highlighting the highly technical features of this exciting
track.
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CHAPTER

EIGHT

CREATING CUSTOM SENSOR CONFIGURATIONS

8.1 Overview

You can create arbitrary configurations of vehicle sensors with our environment. The following sensors are supported
and can be placed, if applicable, at any location relative to the vehicle:

• RGB cameras

• Depth cameras

• Ground truth segmentation cameras

• Fisheye cameras

• Ray trace LiDARs

• Depth 2D LiDARs

• Radars

We will go over a brief tutorial on how to create and configure a custom camera using our environment.

Note: The L2R SimulatorController cannot create new sensors in the simulator, but it can enable sensors and modify
their configuration.

8.2 Creating Sensors

By default, the simulator will load the previously saved vehicle configuration.

8.2.1 (Option 1) User Interface

1. Run the simulator and select an arbitrary map

2. On the right panel, select “Vehicle Sensor Settings”

3. In the top right, select “Add Sensor”

4. Select the sensor you wish to create

5. Configure the sensor to your choosing

6. Press “ESC” then select “Save All” or “Save Vehicle” in the top panel

25

l2r.core.html#l2r.core.controller.SimulatorController


Learn-to-Race

Optionally, you can export the vehicle configuration by selecting “Vehicle Settings” in the right panel, scrolling down,
and exports to a JSON or Yaml file.

8.2.2 (Option 2) Configuration File

Our repository contains a default vehicle configuration file which serves as a valuable reference tool.

1. Simply modify parameters or add new sensors as you see fit

2. Add your file to the appropriate simulator directory, for example, ArrivalSim-linux-0.7.0.182276/
LinuxNoEditor/Engine/Binaries/Linux/l2r_vehicle_conf.yaml

3. Run the simulator and select an arbitrary map

4. Select “Vehicle Settings” in the right panel

5. Scroll down, and load your updated configuration

6. Press “ESC” then select “Save All” or “Save Vehicle” in the top panel

For example, we can add a rear facing camera named “CameraRearRGB” by appending this camera configuration to
l2r_vehicle_conf.yaml then following the steps above.

version: 1.1
cameras
- name: CameraRearRGB
enabled: false
model: ARRIVAL Generic Camera
pose:
x: -1.000 # 1m behind the reference point, slightly outside the vehicle
y: 0.000
z: 0.500 # 50cm above the reference point
pitch: 0.0
roll: 0.0
yaw: 180.0 # rotate the camera around the Z-axis by 180 degrees

transport:
zmq: tcp://0.0.0.0:9999

8.3 Using Your New Sensor

To use your newly created camera, you simply need to add it to your parameter configuration file. The random ac-
tion baseline configuration serves as a good reference. Once added, the observation returned from the environment’s
`step()` method will include the new images which are accessible via the camera’s name. For example:

env_kwargs:
cameras:
CameraRearRGB:
Addr: 'tcp://0.0.0.0:8008' # make sure this address is unique
Format: ColorBGR8
FOVAngle: 90
Width: 512
Height: 384
bAutoAdvertise: True

Rear facing images will be available like:
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while not done:
action = self.select_action()
state, reward, done, info = self.env.step(action)
rear_image = state['CameraRearRGB'] # numpy array

8.3. Using Your New Sensor 27



Learn-to-Race

28 Chapter 8. Creating Custom Sensor Configurations



CHAPTER

NINE

CORE PACKAGE

9.1 l2r.core.controller

9.2 l2r.core.templates

Note: The templates module provides useful abstract classes which we recommend using for compatability with the
RacingEnv.

class l2r.core.templates.AbstractAgent(*args, **kwargs)
Bases: abc.ABC

Abstract agent class. A potentially useful template for racing agents.

abstract select_action()
Select an action to take.

class l2r.core.templates.AbstractInterface(*args, **kwargs)
Bases: abc.ABC

Abstract simulator interface to receive data from the simulator.

abstract get_data()
This method is used to return the most up-to-date information from the interface.

abstract reset()
Used to reset the interface, often to clear existing data.

abstract start()
The start method is used to start communication with the simulator.

class l2r.core.templates.AbstractReward(*args, **kwargs)
Bases: abc.ABC

Abstract reward class. It is recommended that new reward policies follow this template so that they are compatible
with the RacingEnv.

abstract get_reward(state, **kwargs)
Return the reward for the provided state.

Parameters state (varies) – the current environment state

abstract reset()
Reset the reward policy.
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set_track(inside_path, outside_path, centre_path, car_dims)
Store the track and vehicle information as class variables. This is useful for evaluating the reward based on
the position of the vehicle.

Parameters

• inside_path (matplotlib.Path ) – ENU coordinates of the inside track boundary

• outside_path (matplotlib.Path ) – ENU coordinates of the outside track boundary

• centre_path (matplotlib.Path ) – ENU coordinates of the track’s centerline

• car_dims (list) – dimensions of the vehicle in meters: [length, width]

9.3 l2r.core.tracker
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CHAPTER

TEN

ENVS PACKAGE

10.1 l2r.envs.env

10.2 l2r.envs.reward

10.3 l2r.envs.utils

31



Learn-to-Race

32 Chapter 10. Envs Package



CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search
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